

Page 1

Vicerrectorate for Teaching Staff
and Academic Organization

The study guide for the course

University of Oviedo, Spain

1. Subject Identification

NAME Software Architecture CODE

DEGREE Software Engineering CENTER
Computer Science Engineering
School

TYPE Compulsory E.C.T.S. 6

PERIOD Semester LANGUAGE English

COORDINATOR LECTURER PNONE/EMAIL ADDRESS

Jose Emilio Labra Gayo labra@uniovi.es
Office. 206 – Edif.

Fac. Ciencias
Oviedo

OTHER LECTURERS PHONE/EMAIL ADDRESS

Aquilino Adolfo Juan Fuente aajuan@uniovi.es
Office 197 – 3rd floor –

Fac. Ciencias
Oviedo

Begoña Cristina Pelayo García-Bustelo crispelayo@uniovi.es
Office 198 – 3rd floor –

Fac. Ciencias
Oviedo

Jordán Pascual Espada pascualjordan@uniovi.es
OOTLAB – 3rd floor –

Fac. Ciencias
Oviedo

Vicente García Díaz garciavicente@uniovi.es
Office 196 – 3rd floor –

Fac. Ciencias
Oviedo

2. ContextDegree

This course is part of the Software Engineering degree. It is also part of the specific training
module titled Software engineering. Other related subjects are Software Process Engineering;
Software Design; Software Quality, validation and Verifying; Requirements Engineering and
Software Engineering Modelling.

The subject is compulsory and is taught during the second semester of the third year of the
Degree in Software Engineering.

It has 6 ECTS credits, which represent a total of 150 hours, 60 on-campus activities hours and 90
self-study hours.

mailto:labra@uniovi.es
mailto:aajuan@uniovi.es
mailto:crispelayo@uniovi.es
mailto:pascualjordan@uniovi.es
mailto:garciavicente@uniovi.es

Page 2

Vicerrectorate for Teaching Staff
and Academic Organization

From the organizational point of view, the subject will have two hours of lectures a week (for a
total of 21 hours), one hour seminar (for a total of 7 hours), two hours of laboratory practice (for a
total 28 hours), and 2 group tutorials hours.

3. Requirements

To take this course, it is recommended to have successfully acquired the learning objectives
established in the subjects Software Process Engineering and Software Design of the first semester

of the third year.

4. Competencies and Learning Outcomes

According to the Verification Report for the Degree in Software Engineering from the University of
Oviedo, general competencies that students will acquire after studying the subject of Software
Architecture are the following (the first column of the table shows the notation of each competency
in the verification report):

General Competencies

CG-1 Ability to design solutions to human complex problems

Specific Competencies – Common to Computer Science

Com.1 Ability to design, develop, select and evaluate applications and systems, ensuring
their reliability, safety and quality, according to ethical principles, laws and
regulations.

Com.8 Ability to analyse, design, build and maintain applications in a robust, secure and
efficient way, and choosing the most suitable paradigms and programming
languages.

Com.11 Knowledge and application of features, functionality and structure of distributed
systems, computer networks and the Internet, and to design and implement
applications based on them.

Specific Competencies – Software Engineering Technology

ISW.1 Ability to develop, maintain and evaluate software systems and services that match
all user requirements and behave reliably and efficiently, being affordable to develop
and maintain and accomplishing quality standards, applying the theories, principles,
methods and Software Engineering good practices.

Page 3

Vicerrectorate for Teaching Staff
and Academic Organization

ISW.3 Ability to solve integration problems in terms of strategies, standards and available
technologies.

ISW.4 Ability to identify and analyse problems and to design, develop, implement, verify
and document software solutions based on adequate knowledge of the theories,
models and techniques.

Learning Outcomes

The learning outcomes that students will achieve after completing the course as stated in the
Verification Report for the Degree in Software Engineering, are as follows (the first column of the

table shows the notation of each learning outcome in the verification report):

RA.IS-1. Making complex Software Engineering Projects that provide solutions to real
problems and to solve them using techniques and technologies related to
manufacturing processes, including software frameworks, architectural patterns,
design and integration patterns, and quality software development

RA.IS-3. To apply different construction techniques in designing low level software

RA.IS-4. Develop design and object-oriented programming with a high level of competence

RA.IS-5. To evolve and refactor existing designs to afford changing requirements

RA.IS-6. Determining the degree of maintainability, reliability and efficiency of software
designs

RA.IS-7 To design and implement software using different middleware technologies

RA.IS-9 To design and to carry out checks and efficient and effective inspections about
validation, verification, quality and test plans

RA.IS-10 Statistically analysing the density of defects and failure probability

RA.IS-11 Evaluating the quality of a software process from the point of view of product quality

5. Syllabus

1. Software Architecture definition and basic concepts

a. Software Architecture Introduction

b. Describing Architectures

c. Modelling Architectures

Page 4

Vicerrectorate for Teaching Staff
and Academic Organization

d. Elements Related to Documentation

2. Software Architecture Taxonomies

a. Introduction to Architecture Taxonomies

b. Allocation: Building, deployment and distribution

c. Modularity

d. Behaviour: Components and connectors

e. Integration

f. Business architectures

3. Software Architecture based on Models

a. Introduction to Architecture based on Models, Models and Metamodels

b. Model Driven Architectures

c. Specific domain and metamodel languages

6. Working plan and methodology

Course schedule:

Content (topics) Study

week

Lectures Seminars / Laboratory

1. Software Architecture definition and basic concepts

a. Software Architecture Introduction Week 1 Online lecture

16th September

12:00 - 13:30

CASE Tool

(Seminar-Documentation)

b. Describing Architectures
Week 2

Online lecture

23th September

12:00 - 13:30

UML

(Seminar-Video)

c. Modelling Architectures Week 3 Online lecture

30th September

12:00 - 13:30

Case of example

(Laboratory-Online)

d. Elements Related to Documentation Week 4 Online lecture

7th October

12:00 - 13:30

Building Architecture

Documentation

(Seminar-Video)

2. Software Architecture Taxonomies

a. Introduction to Architecture Taxonomies Week 5 Online lecture

14th October

12:00 - 13:30

Practical Task

(Laboratory-Online)

b. Allocation: Building, deployment and
distribution

Week 6 Online lecture

21th October
12:00 - 13:30

Practical Task

(Laboratory-Foro-Chat)

c. Modularity Week 7 Online lecture
28th October

12:00 - 13:30

Practical Task
(Laboratory-Foro-Chat)

Page 5

Vicerrectorate for Teaching Staff
and Academic Organization

Content (topics) Study

week

Lectures Seminars / Laboratory

d. Behaviour: Components and connectors Week 8 Online lecture

4th November

12:00 - 13:30

Practical Task

(Laboratory-Foro-Chat)

e. Integration Week 9 Online lecture

11th November
12:00 - 13:30

Practical Task

(Laboratory-Foro-Chat)

f. Business architectures Week 10 Online lecture

18th November

12:00 - 13:30

Practical Task

(Laboratory-Online)

3. Software Architecture based on Models

a. Introduction to Architecture based on
Models, Models and Metamodels

Week 11 Online lecture

25th November

12:00 - 13:30

Practical Task

(Laboratory-Foro-Chat)

c. Model Driven Architectures

d. Specific domain and metamodel languages Week 12 Online lecture
2th December

12:00 - 13:30

BPM
(Video)

Practical Task

(Laboratory-Foro-Chat)

4. Practical task

a. Ending and documenting the work Week 13 Online

9th December

12:00 - 13:30

Practical Task

(Laboratory-Online) b. Building the team presentation

5. Assessment

Practical Work, oral presentation Week 14 Online

16th December

12:00 - 15:00

Theoretical test Week 14 Virtual Campus

As stated in the IEEE, students will carry out face-to-face and self-study works and teachers will
supervise these activities.

Teaching activities will be of one of these five types:

 Lectures, where to establish fundamental contents and where the student will be guide for
their self-study activities.

 Workshops and seminars, to drive the student through active and collaborative learning,
integrating lectures and virtual campus work.

 Laboratory practices, where to make different projects to solve any proposed problems.
Individual and team projects will be done, requiring for students self-study work.

 Evaluation Sessions, examinations will be carried on in order to assess student acquisition
of knowledge.

7. Learning material

Learning material consists of:

Page 6

Vicerrectorate for Teaching Staff
and Academic Organization

 scientific literature;

 additional interesting and useful literature;

 records of presentations and online consultations in virtual learning environment;

 practical tasks;

 real time chat, discussion forums and reflection blogs;

 learning guide for Software Architecture;

 video seminars and presentations.

Methodology

The student will have access to the following contents:

1. Learning Guide: For Software Architecture. It describes the basic theoretical elements

that will be dealt with in the online lectures.
2. Learning Objects: Basically, the learning objects are the contents of the guide, along with

some additional elements (videos, audio, etc.) and the self-assessment tools. These
objects will be available in the Virtual Campus.

3. Additional books and readings: These are references to other additional learning

contents that expand those of the Guide and the Learning Objects.

The working method of this subject is described below:

1. Before a theoretical online lecture (24 to 48 hours prior), the student will have to revise the
theoretical contents in the Learning Guide or in the Learning Objects in the Virtual
Campus. They may expand their knowledge (approx. 1 hour).

2. During the theoretical online lecture, these contents will be once again revised and related
cases of usage will be analysed. The contents will also be expanded, based on the
commented references (1 hour).

3. After the theoretical class, the student will have to revise again this document or the
learning objects, and the additional references that have been marked as compulsory
reading (the others are left to the judgment of the student). When a reading is compulsory,
it will be marked with “COMP” in the Learning Guide. This revision will have to be
completed before the first 76 hours after the theoretical class (approx. 4 hours).

4. Lastly, a 3-day period will be opened so that the student is able to take the corresponding
self-assessment tests on the Virtual Campus (Half an hour).

Any student who doesn’t pass the test will have to start over this process from point 3. The first
positive mark (over 5) will be their final mark on that topic, and all the successive positive
evaluations will be deleted.

Page 7

Vicerrectorate for Teaching Staff
and Academic Organization

8. Learning Assessment

Assessment will be divided in two different aspects:

1. Theoretical Assessment: several exams (40% of final mark). It will take into account so
the self-assessment tests (50%) as the final test (50%).

2. Laboratory Assessment: Individual and team projects (60% of final mark).

Final mark:

Mark = Theoretical Assessment * 0.40 + Laboratory Assessment * 0.60

9. Resources, bibliography and complementary documentation

Bibliography of Compulsory Reading

Albin, Stephen T. 2003. The Art of Software Architecture: Design Methods and Techniques . s.l. : John

Wiley & Sons , 2003. ISBN:0471228869.

Bass, Len, Clements, Paul y Kazman, Rick. 2013. Software Architecture in Practice. 3. s.l. : Software

Engineering Institute, Carnegie Mellon, 2013.

Clements, Paul, y otros. 2010. Documenting Software Architecture. Boston : Pearson Education, Inc.,

2010. ISBN-13: 978-0-321-55268-6.

Garland, Jeff y Anthony, Richard. 2003. Large-Scale Software Architecture: A Practical Guide using

UML. s.l. : John Wiley & Sons, LTD, 2003. ISBN: 0 470 84849 9.

Gorton, Ian. 2006. Essential Software Architecture. New York : Springer Berlin Heidelberg, 2006.

ISBN-13 978-3-540-28713-1.

Additional interesting and useful literature

Albin, Stephen T. 2003. The Art of Software Architecture: Design Methods and Techniques . s.l. : John

Wiley & Sons , 2003. ISBN:0471228869.

Ambler, Scott W. 2004. The Object Primer: Agile Model-Driven Development with UML 2.0. New York :

Cambridge University Press, 2004. ISBN 0-521-54018-6.

ANSI/IEEE 1471. 2000. Recommended Practice for Architectural Description of Software-Intensive

Systems. s.l. : ANSI/IEEE, 2000. ANSI/IEEE Std 1471-2000.

Page 8

Vicerrectorate for Teaching Staff
and Academic Organization

Architecture, Design, Implementation. Eden, Amnon H. y Kazman, Rick. 2003. Portland, OR : IEEE

Computer Society Washington, DC, USA, 2003, ICSE'03 25th International Conference on Software

Engineering , págs. 149-159. ISBN 0-7695-1877-X.

Bachmann, Felix, y otros. 2000. Software ArchitectureDocumentation in Practice: Documenting

Architectural Layers. s.l. : Carnegie Mellon University, 2000. CMU/SEI-2000-SR-004.

Bass, Len, Clements, Paul y Kazman, Rick. 2013. Software Architecture in Practice. 3. s.l. : Software

Engineering Institute, Carnegie Mellon, 2013.

—. 2003. Software Architecture in Practice, Second Edition. Boston : Addison Wesley, 2003. ISBN: 0-

321-15495-9.

Beck, Kent. 1999. Extreme Programming Explained: embrace change. s.l. : Addison-Wesley

Professional, 1999.

Big Ball of Mud. Foote, Brian y Yoder, Joseph. 1997. Monticello, Illinois : s.n., 1997. Vol. Fourth

Conference on Patterns Languages of Programs. http://www.laputan.org/mud/.

Billy Reynoso, Carlos. 2004. Introducción a la Arquitectura de Software. Buenos Aires : Universidad

de Buenos Aires, 2004.

Buschman, Frank, Henney, Kevlin y Schmidt, Douglas C. 2007. Pattern Oriented Software

Architecture: A pattern language for distributed computing. s.l. : Wiley, 2007. Vol. 4.

Buschman, Frank, y otros. 2001. Pattern Oriented Software Architecture: A system of patterns. s.l. :

Wiley, 2001. Vol. 1.

Camacho, Erika, Cardoso, Fabio y Núñez, Gabriel. 2004. ARQUITECTURAS DE SOFTWARE - Guía de

Estudio. Caracas : Universidad Simón Bolívar, 2004.

Carmegie Mellon. 2012. Software Engineering Institute (SEI). Duties, Skills, & Knowledge of a

Software Architect. [En línea] 2012.

http://www.sei.cmu.edu/architecture/research/previousresearch/duties.cfm.

Clements, Paul, y otros. 2000. A practical method for documenting software architectures. [En

línea] Carnegie Mellon University, 2000. http://www-2.cs.cmu.edu/afs/cs/project/able/ftp/icse03-

dsa/submitted.pdf.

Clements, Paul, y otros. 2010. Documenting Software Architecture. Boston : Pearson Education, Inc.,

2010. ISBN-13: 978-0-321-55268-6.

Clements, Paul, y otros. 2011. Documenting software architectures. 2011.

Page 9

Vicerrectorate for Teaching Staff
and Academic Organization

Cockburn, Alistair. 2005. Hexagonal Architecture. [En línea] 2005.

http://alistair.cockburn.us/Hexagonal+architecture.

Cooper, Alan, Reinman, Robert y Cronin, David. 2009. About Face 3: The Essentials of User

Interface Design. s.l. : Wiley, 2009. ASIN: B008NC0XR2.

Cooper, I. y Dilley, J. 2001. HTTP Proxy/Caching Problems. s.l. : IETF, 2001. Request for Comments.

3143.

Coplien, James A. 2010. Lean Architecture: for Agile Software Development. s.l. : Wiley, 2010.

Coplien, James O. y Bjornvig, Gertrud. 2010. Lean Architecture for Agile Software Development. s.l. :

Wiley, 2010.

Erl, Thomas, y otros. 2012. SOA with REST. s.l. : Prentice Hall, 2012.

Etzion, Opher y Niblett, Peter. 2011. Event Processing in Action. s.l. : Manning, 2011.

Evans, Eric. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. s.l. : Addison-

Wesley, 2003.

Fairbanks, George. 2010. Just enough Software Architecture. s.l. : Marshall & Brainerd, 2010.

Fielding, Roy Thomas. 2000. Architectural Styles and the design of network based architectures. Tesis

doctoral. s.l. : Universidad de California, Irvine, 2000.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Fowler, Martin. 2010. Domain-Specific Languages. s.l. : Addison-Wesley Professional, 2010.

—. 2002. Patterns of Enterprise Application Architecture. s.l. : Addison-Wesley, 2002.

Frank, Buschmann, y otros. 1996. Pattern Oriented Software Architecture. Chichester, New York,

Brisbane, Toronto, Singapore : John'Wiley & Sons Ltd., 1996. ISBN 0 471 95889 7.

Frankel, David S. 2003. Model Driven Architecture. Applying MDA to Enterprise Computing.

Indeanapolis : Willey Publishing, Inc, 2003.

Garlan, David y Shaw, Mary. 1993. An Introduction to Software Architecture. [ed.] V. Ambriola y G.

Tortora. Advances in Software Engineering and Knowledge Engineering. New Jersey : World Scientific

Publishing Company, 1993, Vol. 1.

http://www.cs.cmu.edu/afs/cs/project/vit/ftp/pdf/intro_softarch.pdf.

Garland, Jeff y Anthony, Richard. 2003. Large-Scale Software Architecture: A Practical Guide using

UML. s.l. : John Wiley & Sons, LTD, 2003. ISBN: 0 470 84849 9.

Page 10

Vicerrectorate for Teaching Staff
and Academic Organization

Gorton, Ian. 2006. Essential Software Architecture. New York : Springer Berlin Heidelberg, 2006.

ISBN-13 978-3-540-28713-1.

Greer, Derek. 2007. Interactive Application Architecture. [En línea] 2007.

http://aspiringcraftsman.com/2007/08/25/interactive-application-architecture/.

Hanmer, Robert. 2013. Pattern Oriented Software Architecture for Dummies. s.l. : For Dummies,

2013.

Hohmann, Luke. 1997. Journey of the Software Professional: The Sociology of Software Development.

s.l. : Prentice Hall, 1997.

Hohpe, Gregor y Woolf, Bobby. 2004. Enterprise Integration Patterns: Designing, building and

deploying messaging solutions. s.l. : Addison Wesley, 2004.

Humble, Jez y Farley, David. 2010. Continuous Delivery. s.l. : Addison-Wesley, 2010.

Ibsen, Claus y Anstey, Jonathan. 2011. Camel in Action. s.l. : Manning, 2011.

ISO. 1994. ISO. Reference Model of Open Distributed Processing (RM-ODP). s.l. : International

Organization for Standardization, 1994. Technical Report 10746.

Kelly, Steven y Tolvanen, Juha-Pekka. 2008. Domain-Specific Modeling. Enablign full code

generation. New Jersey, EEUU : John Willey & Sons, 2008.

Knoernschild, Kirk. 2012. Java Application Architecture: modularity patterns with examples using

OSGi. s.l. : Prentice Hall, 2012.

Kruchten, P. 1995. Architectural Blueprints - The “4+1” View Model of Software Architecture. s.l. :

IEEE, 1995. IEEE Software 12 (6).

Martin, Robert C. 2003. Agile Software Devlopment: Principles, Patterns and Practices. s.l. : Pearson

Education, 2003.

—. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. s.l. : Prentice Hall, 2008.

May, Nicholas. 2005. A Survey of Software Architecture Viewpoint Models. Melbourne, Australia :

Swinburne University of Technology, Pages: 13–24, 2005.

Mellor, Stephen J, y otros. 2004. MDA Distilled. Principles of Model-Driven Architecture. Boston,

EEUU : Pearson Education, Inc., 2004.

Norris, D. 2004. Communicating Complex Architectures with UML and the Rational ADS. s.l. : IBM,

2004. Proceedings of the IBM Rational Software Development User Conference.

Page 11

Vicerrectorate for Teaching Staff
and Academic Organization

OMG. Object Management Group. [En línea] http://www.omg.org/.

OMG-MDA. 2013. The Architecture of Choice for a Changing World. OMG Model Driven Architecture.

[En línea] 2013. http://www.omg.org/mda/.

OMG-UML. 2012. Documents Associated with Unified Modeling Language (UML) Version 2.5. "In

Process version". [En línea] Octubre de 2012. http://www.omg.org/spec/UML/2.5/Beta1/.

—. 2011. Documents associated with Unified Modeling Language (UML), v2.4.1. OMG-UML. [En línea]

OMG-UML, Agosto de 2011. http://www.omg.org/spec/UML/2.4.1/.

—. 2005. OMG (Object Management Group). Unified Modeling Language™ (UML®). [En línea] OMG,

2005. http://www.omg.org/spec/UML/.

—. 1997. UML® Resource Page. [En línea] OMG - Object Management Group, 1997.

http://www.uml.org/.

On the criteria to be used in decomposing systems into modules. Parnas, David. 1972. 12, 1972,

Communications of the ACM, Vol. 15.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf.

Qian, Kai, y otros. 2010. Software architecture and design Illuminated. s.l. : Jones and Batlet

Illuminated series, 2010.

Qian, Kai, y otros. 2008. Software Architecture and Design Illuminated. s.l. : Jones and Bartlet

Publishers, 2008.

RAE. Real Academia de la Lengua. [En línea] http://www.rae.es/rae.html.

Rasmusson, Jonathan. 2010. The Agile Samurai. s.l. : The Pragmatic Programmer, 2010.

Reynoso, Carlos y Kicillof, Nicolás. 2004. Lenguajes de Descripción de Arquitectura (ADL). Buenos

Aires : Universidad de Buenos Aires, 2004.

Rotem-Gal-Oz, Arnon. 2006. Fallacies of Distributed Computing Explained. [En línea] 2006.

http://www.rgoarchitects.com/Files/fallacies.pdf.

Rottem-Gal-Oz, Arnon. 2013. SOA Patterns. s.l. : Manning, 2013.

Soni, Dilip, Nerd, Robert L. y Hofmeister, Christine. Software Architecture in Industrial

Applications. [En línea] http://www.users.abo.fi/lpetre/SA10/paper95.pdf.

Taylor, Richard N., Medvidovic, Nenad y Dashofy, Eric M. 2010. Software Architecture.

Foundations, Theory and Practice. s.l. : Wiley, 2010.

Page 12

Vicerrectorate for Teaching Staff
and Academic Organization

Torre LLorente, César Luis, y otros. 2010. Guía de arquitectura N-Capas orientada al dominio con

.Net 4.0. s.l. : Krasis Press, 2010.

uml-diagrams.org. 2010. UML Profile Diagrams. [En línea] 2010. http://www.uml-

diagrams.org/profile-diagrams.html.

Vernon, Vaughn. 2013. Implementing Domain Driven Design. s.l. : Addison-Wesley Professional,

2013.

Wilder, Bill. 2012. Cloud Architecture Patterns. s.l. : O'Reilly, 2012.

Wojcik, Rob, y otros. 2006. Attribute-Driven Design (ADD), Version 2.0. s.l. : Software Engineering

Institute, 2006. CMU/SEI-2006-TR-023 / ESC-TR-2006-023.

	The study guide for the course
	1. Subject Identification
	2. ContextDegree
	3. Requirements
	4. Competencies and Learning Outcomes
	General Competencies
	Specific Competencies – Common to Computer Science
	Specific Competencies – Software Engineering Technology
	Learning Outcomes

	5. Syllabus
	6. Working plan and methodology
	7. Learning material
	Methodology

	8. Learning Assessment
	9. Resources, bibliography and complementary documentation
	Bibliography of Compulsory Reading
	Additional interesting and useful literature

